Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6081, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480834

RESUMO

Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Nanopartículas , Cobre/química , Staphylococcus aureus , Escherichia coli , Nanopartículas/química , Óxidos/farmacologia , Óxidos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
2.
ACS Omega ; 8(47): 44867-44879, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046339

RESUMO

Nanotechnology research is emerging as a cutting-edge technology, and nanocomposites have played a significant role in pest control. Therefore, the present study focuses on the synthesis of tungsten oxide (WO3), iron oxide (magnetic nanoparticle, MNP), and copper-doped iron oxide (MNP-Cu) nanocomposites and explores the different effects of their binary combinations with the insecticide cyromazine against Spodoptera littoralis. The synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. None of the tested nanomaterials showed any toxicity against the different stages of S. littoralis. Larval and pupal durations increased with increasing cyromazine and nanomaterial concentrations. The longest larval and pupal durations were recorded under treatment with the mixture of cyromazine (100 mg/L) + MNP-Cu (500 mg/L); the survival periods were 23.5 and 15.6 days, compared with 10.8 and 7.7 days in the control, respectively. The percentages of pupation and adult emergence were negatively affected by all treatments. Among the 500 mg/L nanomaterial combinations, only cyromazine (25 mg/L) and WO3 (500 mg/L) resulted in adult emergence (at a rate of 27.3%). Some abnormalities in the S. littoralis stages were observed following treatment with the tested materials. The glutathione S-transferase and alpha-esterase enzyme activities in S. littoralis were significantly increased after treatment with cyromazine, followed by cyromazine/MNP-Cu combinations. The quantitative polymerase chain reaction (Q-PCR) data showed that all treated insects had a higher immune response than the control. Finally, mixes of nanocomposites and cyromazine may be suggested as viable alternatives for S. littoralis management.

3.
Water Sci Technol ; 88(2): 392-407, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37522441

RESUMO

The current paper outlines the synthesis of pristine multi-wall carbon nanotubes (PMWCNTs)/Vanadium pentoxide V2O5 and functionalized multi-wall carbon nanotubes (FMWCNTs)/V2O5 nanocomposite for photocatalytic applications. The FMWCNTs were obtained by the oxidizing agents (H2SO4 and HNO3) to introduce the oxygenated functional groups. The samples were synthesized by hydrothermal approach and investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity of multi-wall carbon nanotubes (MWCNTs), FMWCNTs/V2O5, and PMWCNTs/V2O5 nanocomposites was assessed via methylene blue (MB) degradation from water under visible light. The results demonstrated that the removal efficiency of MB by PMWCNTs, FMWCNTs/V2O5, and PMWCNTs/V2O5 could reach 90.4, 98.9, and 94.9%, respectively. It was noticed that MB adsorption and photodegradation tend to follow pseudo-second-order kinetics. The mechanism of MB photodegradation by FMWCNTs/V2O5 nanoparticles was explained. MWCNTs/V2O5 nanocomposites will allow further applications to remove other dyes and contaminants from wastewater.


Assuntos
Nanocompostos , Nanotubos de Carbono , Fotólise , Nanotubos de Carbono/química , Adsorção , Microscopia Eletrônica de Varredura , Nanocompostos/química
4.
Sci Rep ; 13(1): 3200, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823304

RESUMO

In this study, we identified a suitable precursor and good cellular compartmentalization for enhancing bioactive metabolites to produce biosynthetic zinc oxide nanoparticles (ZnO NPs). An effective medium for cultivating endophytic Streptomyces albus strain E56 was selected using several optimized approaches in order to maximize the yield of biosynthetic ZnO NPs. The highest biosynthetic ZnO NPs yield (4.63 g/L) was obtained when pipetting the mixed cell-free fractions with 100 mM of zinc sulfate as a precursor. The generation of biosynthetic ZnO NPs was quickly verified using a colored solution (white color) and UV-Visible spectroscopy (maximum peak, at 320 nm). On a small scale, the Taguchi method was applied to improve the culture medium for culturing the strain E56. As a result, its cell-dry weight was 3.85 times that of the control condition. And then the biosynthesis of ZnO NPs (7.59 g/L) was increased by 1.6 times. Furthermore, by using the Plackett-Burman design to improve the utilized biogenesis pathway, the biosynthesis of ZnO NPs (18.76 g/L) was increased by 4.3 times. To find the best growth production line, we used batch and fed batch fermentation modes to gradually scale up biomass output. All kinetics of studied cell growth were evaluated during fed-batch fermentation as follows: biomass yield was 271.45 g/L, yield coefficient was 94.25 g/g, and ZnO NPs yield was 345.32 g/L. In vitro, the effects of various dosages of the controllable biosynthetic ZnO NPs as antimicrobial and anticancer agents were also investigated. The treatments with controllable biosynthetic ZnO NPs had a significant impact on all the examined multidrug-resistant human pathogens as well as cancer cells.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Extratos Vegetais/química
5.
Microb Cell Fact ; 21(1): 277, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581886

RESUMO

BACKGROUND: The biosynthesis of silver nanoparticles (AgNPs) is an area of interest for researchers due to its eco-friendly approach. The use of biological approaches provides a clean and promising alternative process for the synthesis of AgNPs. We used for the first time the supernatant of Leclercia adecarboxylata THHM under optimal conditions to produce AgNPs with an acceptable antimicrobial activity against important clinical pathogens. RESULTS: In this study, soil bacteria from different locations were isolated and screened for their potential to form AgNPs. The selected isolate, which was found to have the ability to biosynthesize AgNPs, was identified by molecular methods as Leclercia adecarboxylata THHM and its 16S rRNA gene was deposited in GenBank under the accession number OK605882. Different conditions were screened for the maximum production of AgNPs by the selected bacteria. Five independent variables were investigated through optimizations using one variable at a time (OVAT) and the Plackett-Burman experimental design (PBD). The overall optimal parameters for enhancing the biosynthesis of AgNPs using the supernatant of Leclercia adecarboxylata THHM as a novel organism were at an incubation time of 72.0 h, a concentration of 1.5 mM silver nitrate, a temperature of 40.0 °C, a pH of 7.0, and a supernatant concentration of 30% (v/v) under illumination conditions. The biosynthesized AgNPs have been characterized by UV-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The biosynthesized AgNPs showed an absorption peak at 423 nm, spherical shape, and an average particle size of 17.43 nm. FTIR shows the bands at 3321.50, 2160.15, and 1636.33 cm-1 corresponding to the binding vibrations of amine, alkyne nitrile, and primary amine bands, respectively. The biosynthesized AgNPs showed antimicrobial activity against a variety of microbial pathogens of medical importance. Using resazurin-based microtiter dilution, the minimum inhibitory concentration (MIC) values for AgNPs were 500 µg/mL for all microbial pathogens except for Klebsiella pneumoniae ATCC13883, which has a higher MIC value of 1000 µg/mL. CONCLUSIONS: The obtained data revealed the successful green production of AgNPs using the supernatant of Leclercia adecarboxylata THHM that can be effectively used as an antimicrobial agent against most human pathogenic microbes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , RNA Ribossômico 16S/genética , Prata/farmacologia , Anti-Infecciosos/farmacologia , Bactérias
6.
Sci Rep ; 12(1): 12972, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902774

RESUMO

In this investigation, Kaolin (K) impregnated aminated chitosan (AM-CTS) composite beads were fabricated with multi-features including low-cost, high performance, renewable and ease of separation for adsorption of anionic Congo red (CR) dye. Characterization tools such as FTIR, XRD, SEM, TGA, BET, XPS and Zeta potential were thoroughly employed to confirm the successful formulation process. The results revealed that K@ AM-CTS composite beads displayed higher specific surface area (128.52 m2/g), while the thermal stability was prominently improved compared to pure AM-CTS. In addition, the adsorption equilibrium of CR dye was accomplished rapidly and closely gotten within 45 min. The removal efficiency was significantly enriched and reached 90.7% with increasing kaolin content up to 0.75%, compared to 20.3 and 58% for pristine kaolin and AM-CTS, respectively. Moreover, the adsorption process obeyed the pseudo-first order kinetic model, while data were agreed with the Freundlich isotherm model with a maximum adsorption capacity reached 104 mg/g at pH 6. Furthermore, D-R isotherm model demonstrated the physical adsorption process of CR dye, which includes the electrostatic interactions, ion exchange and H-bonding. Thermodynamics evidenced the spontaneous and endothermic nature of the adsorption process. Interestingly, the developed K@AM-CTS composites beads showed better reusability for eight consecutive cycles, suggesting their feasible applicability for adsorptive removal anionic dyes from polluted aquatic bodies.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Ânions , Quitosana/química , Corantes , Vermelho Congo/química , Concentração de Íons de Hidrogênio , Caulim , Cinética , Termodinâmica , Poluentes Químicos da Água/química
7.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566959

RESUMO

In our daily lives and product manufacturing, metal corrosion causes significant economic losses. Numerous polymeric composite coatings have been shown to be resistant to harsh environments, such as those found in marine environments. In this study, a composite of polyvinyl alcohol/polyaniline blend loaded with carboxylated graphene was explored in the search for long-lasting coatings to resist electrochemical deterioration of cast iron in desalination systems of saltwater. Polyvinyl alcohol/polyaniline/carboxylated graphene oxide nanocomposite was spin-coated onto cast iron samples. Electrochemical impedance spectroscopy (EIS) and electrochemical DC corrosion testing with a three-electrode system were used to study corrosion resistance in uncoated and coated cast iron samples. The results exhibit effective corrosion protection properties. The EIS data indicated better capacitance and higher impedance values for coated samples than bare metal, depicting enhanced corrosion resistance against the saline environment. Tafel analysis confirmed a significant decrease in the corrosion rate of the PVA/PANI/GO-COOH coated sample.

8.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458309

RESUMO

Effective and efficient removal of both heavy metal pollutants and bacterial contamination from fresh water is an open issue, especially in developing countries. In this work, a novel eco-friendly functional composite for water treatment application was investigated. The composite consisted of electrospun nanofiber membrane from blended polyvinyl alcohol (PVA)/iota carrageenan (IC) polymers doped with equal concentrations of graphene oxide (GO) nanoparticles and polyaniline (PANI). The effectiveness of this composite as a water purification fixed-bed filter was optimized in a batch system for the removal of cadmium (Cd+2) and lead (Pb+2) ions, and additionally characterized for its antimicrobial and antifungal properties and cytotoxicity effect. The fiber nanocomposite exhibited efficient antibacterial activity, with maximum adsorption capacity of about 459 mg g-1 after 120 min for Cd+2 and of about 486 mg g-1 after 90 min for Pb+2. The optimized conditions for removal of both metals were assessed by using a response surface methodology model. The resulting scores at 25 °C were 91.4% (Cd+2) removal at 117 min contact time for 89.5 mg L-1 of initial concentration and 29.6 cm2 membrane area, and 97.19% (Pb+2) removal at contact time 105 min for 83.2 mg L-1 of initial concentration and 30.9 cm2 nanofiber composite membrane. Adsorption kinetics and isotherm followed a pseudo-second-order model and Langmuir and Freundlich isotherm model, respectively. The prepared membrane appears to be promising for possible use in domestic water purification systems.

9.
Polymers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960859

RESUMO

κ-carrageenan is useful for its superior gelling, hydrogel, and thickening properties. The purpose of the study was to maximize the hydrogel properties and water-absorbing capacity of κ-carrageenan by blending it with starch from potato peels to be used as safe and biodegradable water-absorbent children's toys. The prepared materials were analyzed using FTIR and Raman spectroscopy to analyze the functional groups. Results showed that there was a shift in the characteristic peaks of starch and κ-carrageenan, which indicated their proper reaction during blend formation. In addition, samples show a peak at 1220 cm-1 corresponding to the ester sulfate groups, and at 1670 cm-1 due to the carbonyl group contained in D-galactose. SEM micrographs showed the presence of rough surface topology after blending the two polymers, with the appearance of small pores. In addition, the presence of surface cracks indicates the biodegradability of the prepared membranes that would result after enzymatic treatment. These results are supported by surface roughness results that show the surface of the κ-carrageenan/starch membranes became rougher after enzymatic treatment. The hydrophilicity of the prepared membranes was evaluated from contact angle (CA) measurements and the swelling ratio. The swelling ratio of the prepared membranes increased gradually as the starch ratio increased, reaching 150%, while the water-uptake capacity increased from 48 ± 4% for plain κ-carrageenan to 150 ± 5% for 1:2 κ-carrageenan/starch blends. The amylase enzyme showed an effective ability to degrade both the plain κ-carrageenan and κ-carrageenan/starch membranes, and release glucose units for up to 236 and 563, respectively. According to these results, these blends could be effectively used in making safe and biodegradable molded toys with superior water-absorbing capabilities.

10.
Int J Biol Macromol ; 168: 116-123, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33309655

RESUMO

Wide dissemination of pesticides for protecting plants against pests has resulted in high production of un-infected crops but higher environmental pollution. High percentages of pesticides are released to the environment and finally use water as the final destination. The current study is concerning by removal of Imidacloprid pesticide from water using pressure-free passage through polymeric membrane integrated design. Both of chitosan and chitosan functionalized silver nanoparticles (AgNPs @chitosan) membranes were prepared, characterized and applied as adsorbent matrix for Imidacloprid. SEM, TEM and PSA analysis revealed the biosynthesis of AgNPs in the range of 25-50 nm. However, SEM and FTIR analysis revealed the proper formation of chitosan membrane and its proper functionalization with silver nanoparticles. Both of chitosan and AgNPs @chitosan membranes succeeded to remove 40 and 85% of Imidacloprid at slightly acidic pH, respectively. Moreover, the amount of removed Imidacloprid was proportional with the amount of its initial concentration indicating the successful removal of Imidacloprid by AgNPs @chitosan membrane even at higher pesticide concentrations. The obtained results indicate the promising use of AgNPs @chitosan membranes for removal of Imidacloprid pesticide from contaminated water depending on the pressure-free design that lacks external energy support.


Assuntos
Quitosana/química , Neonicotinoides/isolamento & purificação , Nitrocompostos/isolamento & purificação , Prata/química , Antibacterianos/química , Nanopartículas Metálicas/química , Neonicotinoides/química , Nitrocompostos/química , Praguicidas/química , Praguicidas/isolamento & purificação , Polímeros
11.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331239

RESUMO

The wide distribution of infections-related pathogenic microbes is almost related to the contamination of food and/or drinking water. The current applied treatments face some limitations. In the current study, k-carrageenan polymer was used as supporting material for the proper/unreleased silver nanoparticles that showed strong antimicrobial activity against six pathogenic bacteria and yeast. The bio-extract of the pupa of green bottle fly was used as the main agent for the synthesis of silver nanoparticles. The qualitative investigation of biologically synthesized silver nanoparticles was determined using UV-Vis spectrophotometric analysis; however, the size of nanoparticles was in range of 30-100 nm, as confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analyzer. The proper integration of silver nanoparticles into the polymeric substrate was also characterized through fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), SEM, and tensile strength. The antimicrobial activity of k-carrageenan/silver nanoparticles against Gram positive, Gram negative, and yeast pathogens was highly effective. These results indicate the probable exploitation of the polymeric/nanoparticles composite as an extra stage in water purification systems in homes or even at water treatment plants.


Assuntos
Carragenina , Descontaminação/métodos , Água Potável , Química Verde , Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Carragenina/química , Técnicas de Química Sintética , Química Verde/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Estrutura Molecular , Prata/química , Termogravimetria
12.
Materials (Basel) ; 13(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316607

RESUMO

Tungsten oxide nanostructures were modified by oxygen vacancies through hydrothermal treatment. Both the crystalline structure and morphological appearance were completely changed. Spherical WO3·H2O was prepared from tungstic acid solution by aging at room temperature, while rod-like WO3·0.33H2O was prepared by hydrothermal treatment of tungstic acid solution at 120 °C. These structures embedded in sodium alginate (SA)/polyvinylpyrrolidone (PVP) were synthesized as novel porous beads by gelation method into calcium chloride solution. The performance of the prepared materials as photocatalysts is examined for methylene blue (MB) degradation in aqueous solutions. Different operation parameters affecting the dye degradation process, such as light intensity, illumination time, and photocatalyst dosage are investigated. Results revealed that the photocatalytic activity of novel nanocomposite changed with the change in WO3 morphology. Namely, the beads with rod nanostructure of WO3 have shown better effectiveness in MB removal than the beads containing WO3 in spherical form. The maximum degradation efficiency was found to be 98% for WO3 nanorods structure embedded beads, while the maximum removal of WO3 nanospheres structure embedded beads was 91%. The cycling-ability and reuse results recommend both prepared structures to be used as effective tools for treating MB dye-contaminated wastewaters. The results show that the novel SA/PVP/WO3 nanocomposite beads are eco-friendly nanocomposite materials that can be applied as photocatalysts for the degradation of cationic dyes in contaminated water.

13.
Chemosphere ; 239: 124728, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31499314

RESUMO

Numerous of pollutants threaten our planet, for instance plastic wastes causes a huge potential risk on the environment in addition to many of emergened pollutants as pharmaceutical residue in aquatic environments which affecting ecological balance and in-turn affecting human health. Accordingly, this research proposed an innovative facile, one-step synthesis of functionalized magnetic fullerene nanocomposite (FMFN) via catalytic thermal decomposition of sustainable poly (ethylene terephthalate) bottle wastes as feedstock and ferrocene as a catalyst and precursor of magnetite. Growth mechanism of FMFN was discussed and batch experiments were achieved to examine its adsorption efficiency in relation to Ciprofloxacin antibiotic. Different adsorption parameters including time, initial Ciprofloxacin concentration, and solution temperature were investigated and optimized using Response Surface Methodology (RSM) model. In addition, a study on the antibiotic adsorption process impact on the organisms of an ecosystem was conducted using E. coli DH5α, and results validated method's efficiency in overcoming problem of appearance of antibiotic-resistant microbes.


Assuntos
Ciprofloxacina/isolamento & purificação , Fulerenos/química , Nanocompostos/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Ciprofloxacina/química , Ecossistema , Escherichia coli , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Modelos Estatísticos , Plásticos , Polietilenotereftalatos/química , Tomografia por Emissão de Pósitrons , Reciclagem , Temperatura , Poluentes Químicos da Água/química , Purificação da Água/métodos , Purificação da Água/estatística & dados numéricos
14.
RSC Adv ; 10(16): 9347-9355, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35497257

RESUMO

This work is concerned with the bio-exfoliation of graphite using a soil bacterium. The isolated bacterium showed a detectable ability to oxidize and change its physical appearance and chemical structure. Multiple characterization procedures were used to study the physical and chemical changes. Raman and FTIR spectroscopy proved that the isolate G3 partially exfoliated the graphite into multi-layer sp2 graphitic layers. Scanning electron microscopy (SEM) proved that there was a change in morphology between untreated graphite waste and that manipulated by bacteria. Cyclic voltammetry results proved that the green exfoliated graphite (GEG) was suitable for use in biosensor applications and showed a noticeable ability to detect methanol, even at lower concentrations. These findings are considered as promising for the biological manipulation of graphite waste for environmental purposes. In addition, it is proved that the bacterial transformation of graphite into other GEG structures occurs without needing the chemically hazardous methods that are currently applied.

15.
RSC Adv ; 10(36): 21350-21359, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518771

RESUMO

The future expected water scarcity in the world invites the scientists to figure out sustainable solutions for agriculture needs. One of suggested solutions could be the improvement of soil stability and increasing its water retention ability. The current proposal is concerning by the improvement of soil stability through biocementation process. While, water retention ability was enhanced through the amendment of tested soils with alginate hydrogel. An ureolytic bacterial isolate showed a detectable ability to dissociate urea and act as a nucleation site for calcium carbonate precipitation. The bacterium was identified as Bacillus sp. after comparing with other strains in GenBank. The mechanical properties of three tested soil types (sand, calcareous, and clay) were improved after the biocementation by calcium carbonate from 119.8, 45.9, and 5 (N) to 187.5, 423.9, and 337.2, respectively. The Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the appearance of carbon element in samples containing bacterial-immobilized beads and free bacterial cells indicating calcium carbonate formation. The water uptake measurements investigated the ability of alginate beads to retain water with a percentage of 55%. The overall results prove the capability of Bacillus sp. strain combined with alginate hydrogel to improve the soil stability and water retention ability.

16.
Int J Biol Macromol ; 111: 649-659, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29339283

RESUMO

In this study, new hydrogel membranes were developed based on hydroxyethyl cellulose (HEC) supplemented with tungsten oxide for further implementing in wound treatment. HEC hydrogel membranes were fabricated and crosslinked using citric acid (CA). Various tests were carried out including FTIR, XRD, porosity measurements, swelling, mechanical properties, gel fraction, and thermal gravimetric analysis to evaluate the efficiency of the prepared membranes as wound dressing material. In addition, wound healing activity of the examined membranes for human dermal fibroblast cell line was investigated employing in vitro scratching model. Furthermore, the potency of the prepared membranes to suppress wound complications was studied via determination of their anti-inflammatory and antibacterial activities exploiting MTT, ELISA, and disk agar diffusion methods. The results demonstrated that the HEC hydrogel membranes revealed an anti-inflammatory and antibacterial efficacy. Moreover, HEC improved the safety of tungsten oxide toward normal human cells (white blood cells and dermal fibroblast). Furthermore, HEC membranes loaded with WO3 revealed the highest activities against Salmonella sp. pursued by P. aeruginosa in compared with the negative HEC hydrogel membrane. The current approach corroborated that HEC amended by tungsten oxide could be applied as a promising safe candidate for wound dressing material.


Assuntos
Bandagens , Celulose/análogos & derivados , Quitosana/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Celulose/química , Celulose/farmacologia , Quitosana/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Porosidade
17.
Ecotoxicol Environ Saf ; 145: 57-68, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28708982

RESUMO

Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution.


Assuntos
Corantes/análise , Grafite/química , Plásticos/química , Polietilenotereftalatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Química Verde , Cinética , Reciclagem , Temperatura , Águas Residuárias/química
18.
J Air Waste Manag Assoc ; 67(3): 358-370, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27700617

RESUMO

Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst. IMPLICATIONS: Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.


Assuntos
Nanotubos de Carbono/química , Polietilenotereftalatos/química , Gerenciamento de Resíduos/métodos , Meio Ambiente , Plásticos , Reciclagem , Resíduos Sólidos , Água
19.
Appl Biochem Biotechnol ; 180(4): 623-637, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27193257

RESUMO

In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.


Assuntos
Neoplasias do Colo/enzimologia , Marcação de Genes , Metaloproteinase 7 da Matriz/genética , Nanopartículas/química , Óxidos/farmacologia , Tungstênio/farmacologia , Neoplasias do Colo do Útero/enzimologia , Antineoplásicos/farmacologia , Células CACO-2 , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...